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Commitment Consensus

Where we’re at

Last week, we look at distributed mutual exclusion. We assumed that nodes never
crashed or went rogue.

Today, we’ll look at consensus protocols, where nodes may crash or go rogue.
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Commitment Consensus

Architecture for a Fault-Tolerant System
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Commitment Consensus

Failure Models

In the literature there are many more, but we focus on two extremes:

Crash failures failed nodes stop sending messages

Byzantine failures failed nodes can send arbitrary messages, even according to a
malevolent plan
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Commitment Consensus

Commitment Problem

Suppose n agents collaborate on a database transaction.

After each agent has done its share, the agents must reach agreement on whether to
commit the transaction or abort it.

Each agent can be assumed to have formed an initial vote, but not yet made a final
decision.

We must ensure that no two agents make different decisions.
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Commitment Consensus

Commitment Spec

1 All agents that reach a decision reach the same one.

2 If an agent decides to commit, then all agents voted to commit.

3 If there are no failures and all agents voted to commit, then the decision reached
is to commit.

Failure model: Only agents can fail. When they do, they crash.
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Commitment Consensus

2-Phase Commit Algorithm

One distinguished agent, say, agent 1, collects the other agents’ votes. If all votes
(including agent 1’s) are “commit” then agent 1 tells all other agents to commit,
otherwise, to abort. Note that “otherwise” could also mean that some agent crashed
before being able to communicate its vote to agent 1.

Theorem

2-Phase Commit solves the commitment problem but may not terminate if processes
fail.

But how do we know that an agent crashed? What if their message was just slow to
arrive?
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Commitment Consensus

1st Consensus Problem

A group of Byzantine armies is surrounding an enemy city. The balance of force
is such that if they all attack together, they can capture the city; otherwise
they must retreat in order to avoid defeat.
The generals of the armies have reliable messengers who successfully deliver
any mesage sent from one general to another. However, some of the generals
may be traitors endeavouring to bring about defeat of the Byzantine armies.
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Commitment Consensus

Bad News
Quoting and adapting from the PODC webpage for the influential paper award 2001

Theorem (Fischer, Lynch and Paterson 1995)

It is impossible for a set of nodes in an asynchronous distributed system to agree on a
binary value, even if only a single node is subject to an unannounced crash.

Proof sketch

Initially, either decision, 0 or 1, is possible. Assume a correct algorithm. At some point
in time the system as a whole must commit to one value or the other. That
commitment must result from some action of a single process. Suppose that process
fails. Then there is no way for the other processes to know the commitment value;
hence, they will sometimes make the wrong decision. Contradiction!

In order to get anywhere near consensus in the presence of faults, we need a bit of
synchrony. With some synchrony, we can do much better and even tolerate some
Byzantine faults.
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Commitment Consensus

Consider

crash failures (assumed detectable eg by time-out) and

Byzantine failures (detectable at most indirectly).

Task

Devise an algorithm so that the loyal generals come to a consensus on a plan. The
final decision should be almost the same as a majority vote of their initial choices; if
the vote is tied, the final decision is to retreat.
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Commitment Consensus

planType = {A,R} for attack and retreat.

Algorithm 2.1: Consensus—one-round algorithm
planType finalPlan
planType array[generals] plan

p1: plan[myID] ← chooseAttackOrRetreat
p2: for all other generals G
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: finalPlan ← majority(plan)
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Commitment Consensus

Messages Sent in a One-Round Algorithm

Suppose Basil crashed after sending to Leo but before sending to Zoë.
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Commitment Consensus

Data Structures in a One-Round Algorithm

Leo

general plan

Basil A

Leo R

Zoë A

majority

Zoë

general plans

Basil –
Leo R

Zoë A

majority

Thus, the One-Round Algorithm cannot even handle a single crash failure among 3
generals.

Idea

Relay received messages in a further round.
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Algorithm 2.2: Consensus—Byzantine Generals algorithm
planType finalPlan
planType array[generals] plan, majorityPlan
planType array[generals, generals] reportedPlan

p1: plan[myID] ← chooseAttackOrRetreat
p2: for all other generals G // First round
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: for all other generals G // Second round
p7: for all other generals G’ except G
p8: send(G’, myID, G, plan[G])
p9: for all other generals G
p10: for all other generals G’ except G
p11: receive(G, G’, reportedPlan[G, G’])
p12: for all other generals G // First vote
p13: majorityPlan[G] ← majority(plan[G] ∪ reportedPlan[*, G])
p14: majorityPlan[myID] ← plan[myID] // Second vote
p15: finalPlan ← majority(majorityPlan)



Commitment Consensus

Data Structure for Crash Failure - First Scenario (Leo)

Leo

general plan reported by majority

Basil Zoë

Basil A – A

Leo R R

Zoë A – A

majority A

Basil sent his first-round vote to Leo, but crashed before sending it to Zoë.
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Commitment Consensus

Data Structure for Crash Failure - First Scenario (Zoë)

Zoë

general plan reported by majority

Basil Leo

Basil – A A

Leo R – R

Zoë A A

majority A

Basil sent his first-round vote to Leo, but crashed before sending it to Zoë.
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Data Structure for Crash Failure - Second Scenario (Leo)

Leo

general plan reported by majority

Basil Zoë

Basil A A A

Leo R R

Zoë A A A

majority A

Basil sent his second-round vote to Leo, but crashed before sending it to Zoë.
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Data Structure for Crash Failure - Second Scenario (Zoë)

Zoë

general plan reported by majority

Basil Leo

Basil A A A

Leo R – R

Zoë A A

majority A

Basil sent his second-round vote to Leo, but crashed before sending it to Zoë.
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Commitment Consensus

Knowledge Tree about Basil for Crash Failure - First Scenario
Suppose Basil has chosen A and sends all messages.

Leo A Zoë A

Zoë A Leo A

Basil A

��
��

HH
HH

A concise representation of what is known about the root node of the tree; in
traditional epistemic logic with a knowledge modality Ki and attack predicate Ai for
each general i we’d write:

ABasil ∧ KZoëABasil ∧ KLeoABasil ∧ KLeoKZoëABasil ∧ KZoëKLeoABasil
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Knowledge Tree about Basil for Crash Failure - Second Scenario

Suppose Basil has chosen X ∈ {A,R} and crashes right before sending the 1st round
message to Zoë but after sending it to Leo.

Zoë X

Leo X

Basil X

H
HH

H

XBasil ∧ KLeoXBasil ∧ KZoëKLeoXBasil
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Commitment Consensus

Knowledge Tree about Leo for Crash Failure

Suppose Leo has chosen X and Basil crashes before sending the 2nd round message to
Zoë.

Basil X

Zoë X Basil X

Leo X
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��

HH
HH

XLeo ∧ KZoëXLeo ∧ KBasilXLeo ∧ KBasilKZoëXLeo
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Then what?

It seems like the Byzantine Generals protocol is robust to one crash amongst three
generals.

What about Byzantine faults?
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Messages Sent for Byzantine Failure with Three Generals
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Data Stuctures for Leo and Zoë After First Round

Leo

general plans

Basil A

Leo R

Zoë A

majority A

Zoë

general plans

Basil R

Leo R

Zoë A

majority R
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Data Stuctures for Leo After Second Round

Leo

general plans reported by majority

Basil Zoë

Basil A A A

Leo R R

Zoë A R R

majority R
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Data Stuctures for Zoë After Second Round

Zoë

general plans reported by majority

Basil Leo

Basil A A A

Leo R R R

Zoë A A

majority A

Thus the Byzantine Generals Algorithm is incorrect for 3 generals of which 1 is a
traitor.
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Knowledge Tree About Zoë

Basil A

Basil A

Zoë A
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Four Generals: Data Structure of Basil (1)

Basil

general plan reported by majority

John Leo Zoë

Basil A A

John A A ? A

Leo R R ? R

Zoë ? ? ? ?

majority ?
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Four Generals: Data Structure of Basil (2)

Basil

general plans reported by majority

John Leo Zoë

Basil A A

John A A ? A

Leo R R ? R

Zoë R A R R

R
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Knowledge Tree About Loyal General Leo

Leo X
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�
�

�
�

�
�

A
A

A
A

A
A

���
���

��

HH
HHH

HHH

Note that, with Byzantine failures, trees may represent possibly untrue knowledge
(AKA belief in the literature).
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Knowledge Tree About Traitor Zoë

Zoë

Basil X John Y Leo Z

John X Leo X Basil Y Leo Y Basil Z John Z
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Complexity of the Byzantine Generals Algorithm

Generalising to any number of generals works as long a round of messages is added for
every extra traitor and as long as there are at least n = 3t + 1 generals, where t is the
maximum number of treacherous generals.
The resulting numbers of messages are O(n4).

traitors generals messages

1 4 36

2 7 392

3 10 1790

4 13 5408
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Commitment Consensus

If we’re only worried about crash failures a much simpler algorithm suffices:

Algorithm 2.3: Consensus - flooding algorithm
planType finalPlan
set of planType plan ← { chooseAttackOrRetreat }
set of planType receivedPlan

p1: do t + 1 times
p2: for all other generals G
p3: send(G, plan)
p4: for all other generals G
p5: receive(G, receivedPlan)
p6: plan ← plan ∪ receivedPlan
p7: finalPlan ← majority(plan)

t is the number of crashes we can tolerate.
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Commitment Consensus

If we’re only worried about crash failures a much simpler algorithm suffices:

Algorithm 2.4: Consensus - flooding algorithm
planType finalPlan
set of planType plan ← { chooseAttackOrRetreat }
set of planType receivedPlan

p1: do t + 1 times
p2: for all other generals G
p3: send(G, plan)
p4: for all other generals G
p5: receive(G, receivedPlan)
p6: plan ← plan ∪ receivedPlan
p7: finalPlan ← majority(plan)

t is the number of crashes we can tolerate.
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Flooding Algorithm with No Crash:
What Zoë Knows about Leo
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Zoë X

�
��	

@
@@R

??

40



Commitment Consensus

Flooding Algorithm with Crash: Knowledge Tree About Leo (1)

Leo X

?

John X

Basil X

Zoë X Zoë X

Zoë X
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@@R

??

41



Commitment Consensus

Flooding Algorithm with Crash: Knowledge Tree About Leo (2)

Leo X

?

John X

Basil X

Zoë X

@
@@R

?
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Commitment Consensus

Algorithm 2.5: Consensus - King algorithm
planType finalPlan, myMajority, kingPlan
planType array[generals] plan
integer votesMajority

p1: plan[myID] ← chooseAttackOrRetreat

p2: do two times
p3: for all other generals G // First and third rounds
p4: send(G, myID, plan[myID])
p5: for all other generals G
p6: receive(G, plan[G])
p7: myMajority ← majority(plan)
p8: votesMajority ← number of votes for myMajority
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Commitment Consensus

Algorithm 2.5: Consensus - King algorithm (continued)

p9: if my turn to be king // Second and fourth rounds
p10: for all other generals G
p11: send(G, myID, myMajority)
p12: plan[myID] ← myMajority

else
p13: receive(kingID, kingPlan)
p14: if votesMajority > 3
p15: plan[myID] ← myMajority

else
p16: plan[myID] ← kingPlan

p17: finalPlan ← plan[myID] // Final decision
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Commitment Consensus

Scenario for King Algorithm - First King Loyal General Zoë (1)

Basil

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A R R R R 3

John

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A R A R A 3

Leo

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A R A R A 3

Zoë

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A R R R R 3
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Scenario for King Algorithm - First King Loyal General Zoë (2)

Basil

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R

John

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R

Leo

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R

Zoë

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R
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Scenario for King Algorithm - First King Loyal General Zoë (3)

Basil

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R R ? R R 4–5

John

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R R ? R R 4–5

Leo

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R R ? R R 4–5

Zoë

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R R ? R R 4–5
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Scenario 2 for King Algorithm - First King Traitor Irene (1)

Basil

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R

John

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A

Leo

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A

Zoë

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R R
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Scenario 2 for King Algorithm - First King Traitor Irene (2)

Basil

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R A A ? R ? 3

John

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R A A ? R ? 3

Leo

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R A A ? R ? 3

Zoë

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

R A A ? R ? 3
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Scenario 2 for King Algorithm - First King Traitor Irene (3)

Basil

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A

John

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A

Leo

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A A

Zoë

Basil John Leo Irene Zoë myMajority votesMajority kingPlan

A
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Complexity of Byzantine Generals and King Algorithms

traitors BG generals BG messages King generals King messages

1 4 36 5 48

2 7 392 9 240

3 10 1790 13 672

4 13 5408 17 1440
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Impossibility Results

The bounds known for (simultaneous) Byzantine agreement are tight.

Theorem

Simultaneous Byzantine agreement for n generals of which up to t are traitors requires
n > 3t and at least t + 1 rounds of communication.

Simultaneous means all generals decide in the same round.
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Impossibility with Three Generals (1)

We check the condition n > 3t in the special case of t = 1. John is the traitor. Zoë
has plan X and Leo has plan Y. Their knowledge trees are:

Zoë X

JohnLeo
x1, . . . , xn

Leo
u1, . . . , um

�
��

@
@@

Leo Y

JohnZoë
y1, . . . , yn

Zoë
v1, . . . , vm

�
��

@
@@

where the ui are the messages John sent to Leo about his own and Zoë’s plans, etc.
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Impossibility with Three Generals (2)

Since the loyal generals are required to correctly infer the plans of other loyal generals
(by applying some function f to their state), we have that Leo reasons about Zoë’s
plan

f (x1, . . . , xn, u1, . . . , um) = X (1)

and that Zoë reasons about Leo’s plan

f (y1, . . . , yn, v1, . . . , vn) = Y (2)

If X 6= Y , then Zoë and Leo must also come to a consensus on John’s plan.
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Impossibility with Three Generals (3)

The traitor John can use yi for ui and xi for vi , which leads to the loyal generals
thinking

John

Zoë
x1, . . . , xn

Zoë
y1, . . . , yn

Leo
x1, . . . , xn

Leo
y1, . . . , yn

�
��

@
@@

about John’s plan. Using those messages in (1) and (2) gives X = Y , contradiction!
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One round is not enough

Theorem

Let n ≥ 3. Then there is no n-process simultaneous crash-failure agreement algorithm
that tolerates one fault in which all loyal generals always decide by the end of round 1.

Corollary

Let n ≥ 3. Then there is no n-process simultaneous Byzantine agreement algorithm
that tolerates one traitor in which all loyal generals always decide by the end of round 1.
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What now?

Even more distributed algorithms!
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